Accepted Manuscript

THSD7A-associated membranous nephropathy in a patient with neurofibromatosis type 1

Fujun Lin, Dan Zhang, Juan Chang, Xuanli Tang, Wenbin Guan, Gengru Jiang, Chun Zhu, Fan Bian

PII: S1769-7212(17)30289-6

DOI: 10.1016/j.ejmg.2017.10.014

Reference: EJMG 3361

To appear in: European Journal of Medical Genetics

Received Date: 3 May 2017

Revised Date: 13 September 2017

Accepted Date: 22 October 2017

Please cite this article as: F. Lin, D. Zhang, J. Chang, X. Tang, W. Guan, G. Jiang, C. Zhu, F. Bian, THSD7A-associated membranous nephropathy in a patient with neurofibromatosis type 1, *European Journal of Medical Genetics* (2017), doi: 10.1016/j.ejmg.2017.10.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

	ACCEPTE	DMA	NUS	CRIPT
--	---------	-----	-----	-------

1	THSD7A-Associated Membranous Nephropathy in a Patient with
2	Neurofibromatosis Type 1
3	Fujun Lin ¹ , Dan Zhang ¹ , Juan Chang ² , Xuanli Tang ³ , Wenbin Guan ⁴ , Gengru Jiang ¹ ,
4	Chun Zhu ¹ , Fan Bian ¹
5	
6	¹ Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to
7	Shanghai Jiao Tong University School of Medicine, Shanghai, China
8	² Renal Division, Department of Internal Medicine, Xin Hua Hospital (Chongming
9	Branch) Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai,
10	China
11	³ Department of Nephrology (Key Laboratory of Zhejiang Province, Management of
12	Kidney Disease), Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou,
13	China
14	⁴ Department of Pathology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong
15	University School of Medicine, Shanghai, China
16	
17	Correspondence to:
18	Fan Bian, M.D., Renal Division, Department of Internal Medicine, Xin Hua Hospital
19	Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
20	Email: bianfan@xinhuamed.com.cn

21	or:
21	or:

- 22 Chun Zhu, Renal Division, Department of Internal Medicine, Xin Hua Hospital
- 23 Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- 24 E-mail: zhuchun@xinhuamed.com.cn
- 25
- 26 Running title: THSD7A-Associated Membranous Nephropathy with NF1
- 27
- 28 Email addresses of all authors:
- 29 Fujun Lin: linfujun@xinhuamed.com.cn;
- 30 Dan Zhang: zhangdan@xinhuamed.com.cn;
- 31 Juan Chang: Changj601@sina.com;
- 32 Xuanli Tang: tangsunshine1981168@sina.com;
- 33 Wenbin Guan: guanwenbin@xinhuamed.com.cn;
- 34 Gengru Jiang: jianggengru@xinhuamed.com.cn;
- 35 Chun Zhu: zhuchun@xinhuamed.com.cn;
- 36 Fan Bian: bianfan@xinhuamed.com.cn

- 38
- 39
- 40

41 Abstract

42	Target antigens in idiopathic membranous nephropathy (MN) include the
43	phospholipase A2 receptor (PLA ₂ R), and in some cases, the thrombospondin type 1
44	domain-containing 7A (THSD7A). A notable phenomenon is the high rate of cancer
45	(reported to be as high as 20%) in patients with THSD7A-associated MN.
46	Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by NF1
47	gene mutation, and clinically characterized by multiple cutaneous neurofibromas and
48	café-au-lait spots. In this article, we report a patient with NF1 who developed
49	THSD7A-associated MN when the NF1 skin lesions deteriorated. The patient, a
50	62-year-old male, was referred to us for nephrotic syndrome for 6 months. Physical
51	examination revealed multiple cutaneous nodules throughout the entire body, and the
52	patient noted recent increase in the numbers of these skin lesions. Cutaneous nodules
53	excisional biopsy suggested NF1 and Sanger sequencing using genomic DNA
54	extracted from peripheral blood revealed a previously reported heterozygous
55	frameshift NF1 mutation (c.1541_1542delAG, p. Gln514fs). Renal biopsy revealed
56	MN and immunohistochemistry (IHC) showed enhanced staining of THSD7A as well
57	as PLA ₂ R along the glomerular basement membrane whereas the serum level of
58	THSD7A and PLA ₂ Rwere both within normal range. The neurofibroma tissues were
59	positive for THSD7A but not for PLA ₂ R on IHC. The patient did not respond to
60	6-month treatment with glucocorticosteroid and cyclophosphamide. In this

61	exceptional case, strong positive staining of THSD7A in both skin and renal biopsy
62	samples, together with the temporal association between nephrotic syndrome and skin
63	lesions and lack of treatment response, suggested the possibility that MN could be the
64	result of immune response to THSD7A in NF1. This report may improve
65	understanding of the mechanistic link between MN and cancer.
66	
67	Key words:
68	Neurofibromatosis type 1, Membranous nephropathy, THSD7A
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	

81 **1. Introduction**

96

82	Neurofibromatosis type 1 (NF1) is an autosomal dominant disease (prevalence 1:
83	2500 to 1: 3000) caused by the mutation of the NF1 gene that participates in the
84	control of cell division (Lin et al., 2013). First reported by von Recklinghausen in
85	1882, NF1 is characterized by cutaneous neurofibromas, café-au-lait spots and
86	axillary or inguinal freckling (Dombi et al., 2016). Patients with NF1 are at increased
87	risk of developing malignancies and display an assortment of benign and malignant
88	lesions including cutaneous and plexiform neurofibromas, malignant peripheral nerve
89	sheath tumors, optic gliomas, bone abnormalities and leukemia (Boyd et al., 2013).
90	NF1 is associated with renal artery stenosis, and in some cases with glomerular
91	diseases, e.g., membranous nephropathy (MN), minimal change disease, focal
92	segmental glomerulosclerosis, IgA nephropathy and IgM nephropathy (Van-Gils et
93	al., 2010).
94	MN is caused by formation of immune deposits on the outer aspect of the glomerular
95	basement membrane, which contain podocyte or planted antigens and circulating

97 characterized by diffuse thickening of the glomerular basement membrane and

antibodies specific to those antigens (Cattran et al., 2017). Pathologically, MN is

- 98 widespread subepithelial deposits. The major antigen in idiopathic MN is the
- 99 phospholipase A2 receptor (PLA_2R) with about 70% of idiopathic MN cases have
- 100 circulation autoantibodies against PLA₂R (Beck et al., 2009). In a small but

101	significant percentage (about 2% to 9%) of the cases, the antigen responsible for the
102	immune attack in MN is thrombospondin type 1 domain-containing 7A (THSD7A)
103	(Tomas et al., 2014; Iwakura et al., 2015; Wang et al., 2017). Notably,
104	THSD7A-associated MN is strongly associated with malignant tumor. Approximately
105	20% of the patients with THSD7A-associated MN have a malignant tumor upon
106	diagnosis (Hoxha et al., 2017), in contrast to a much lower rate of 1% to 12% in the
107	overall population of MN patients (Jhaveri et al., 2013). In a previous case report,
108	surgical removal of the gallbladder cancer in a patient comorbid with
109	THSD7A-associated MN resulted in THSD7A antibody seroreversion and proteinuria
110	remission (Hoxha et al., 2016). In another report of endometrial cancer comorbid
111	with THSD7A-associated MN (Hoxha et al., 2017), THSD7A was detected in the
112	metastatic lymph nodes of endometrial cancer. In this article, we report a case of
113	THSD7A-associated MN in a patient with NF1 and provide a speculation on the
114	possible mechanistic link between MN and NF1.
115	

116 **2. Patient, materials and methods**

117 2.1 Human samples

118 This study was approved by the Institutional Review Board of Shanghai Xin Hua

119 Hospital. Peripheral blood sample was collected from the patient, whereas blood

- 120 samples were not available from the first-degree relatives of the patient. Written
- 121 informed consent was obtained from the patient.
- 122 2.2 Sanger sequencing
- 123 Genomic DNA was extracted from the peripheral blood sample of the patient. The
- 124 entire *NF1* gene coding regions and splice sites were amplified and directly
- sequenced (primer sequences available upon request) using an ABI PRISM 3730xl
- 126 Genetic Analyzer (Applied Biosytems, USA). Results were analyzed based on NCBI
- 127 reference sequence number NM_001042492.
- 128 2.3 Immnohistochemistry
- 129 Paraffin-embedded sections of formalin-fixed renal biopsy tissues and cutaneous
- 130 nodules tissues of the NF1 patient were utilized for immunohistochemistry (IHC)
- 131 staining. Normal kidney sections from normal nephrectomy samples adjacent to
- tumors were used as normal control. IHC of PLA2R, THSD7A and IgG4 on renal
- tissues and IHC of PLA2R1, THSD7A, neurofibromin and S-100 on cutaneous
- nodules tissues were performed as previously described (Hanai et al., 2016; Hoxha et
- 135 al., 2012; Tomas et al., 2014). Dilution of the primary antibodies were as follows:
- 136 PLA₂R (1:100, Atlas Antibodies, Sweden), THSD7A (1:50, Atlas Antibodies,
- 137 Sweden), IgG4 (1:300, Abcam, UK), neurofibromin (1:100, DAKO, Denmark) and
- 138 S-100 (1:500, Longislandbio, China). The percentage labeling index (number of

- 139 positive neurofibroma cells/total number of neurofibroma cells expressed as a
- 140 percentage) was calculated.
- 141 2.4 Enzyme linked immunosorbent assay
- 142 Serum anti-PLA2R antibody was measured by Enzyme linked immunosorbent assay
- 143 (ELISA) with the ELISA kit provided by EUROIMMUN, Germany [normal range
- 144 0-20 relative units (RU)/mL]. Serum anti-THSD7A antibody was measured by

145 ELISA test with the ELISA kit provided by Jianglai Biotech, China (normal range

- 146 **5.05-95.5 ng/ml)** and the anti-THSD7A antibody result of the patient was also
- 147 compared with that of 6 normal controls.
- 148

149 **3. Results**

- 150 *3.1 Clinical characteristics of the patient*
- 151 The patient is a 62-year-old male. On August 2016, he visited Renal Clinic of Xin
- 152 Hua Hospital with progressive edema of both lower extremities, ascites and foamy
- 153 urine. Physical examination revealed diffuse soft, cutaneous nodules of different sizes
- 154 scattered on his face, trunk and extremities (Fig. 1A), which he claimed had been
- 155 presented since his 30s and the number of nodules increased when edema was
- 156 presented since January 2016. No café-au-lait spot, axillary freckling or any other
- 157 NF1-associated clinical phenotype was observed. He had a 2+ pitting edema on both
- 158 lower extremities. The patient had no family history of either kidney or skin disease.

159	Abnormal laboratory findings revealed heavy proteinuria (urinary protein excretion
160	6.8g/day), occult hematuria 2+, hypoalbuminemia 24.6g/L (total protein 43.7 g/d).
161	Renal function was within normal range (serum creatinine, Scr 72 μ mol/L). Serum
162	anti-PLA2R antibody level was 13.57 RU/mL (normal range 0-20 RU/mL). THSD7A
163	serum level of this patient is 19.85 ng/ml, which was not elevated compared with that
164	in normal controls (the average THSD7A serum level was 20.19 ± 0.66 ng/ml, n=6).
165	Laboratory testing ruled out hepatitis B/C, lupus nephritis, sarcoidosis and solid
166	tumors or hematological malignancies other than NF1. Ophthalmologic examination,
167	neurological examination and brain magnetic resonance imaging were normal.
168	Cutaneous nodules excisional biopsy was performed and histology was consistent
169	with NF1. Renal biopsy revealed features of MN with segmental endothelial and
170	mesangial cell proliferation (Fig. 1B). IHC staining revealed enhanced staining of
171	THSD7A (Fig.1C) and PLA ₂ R (Fig. 1D) along the glomerular basement membrane
172	compared with THSD7A and PLA2R staining of normal control (Fig. 1E and Fig. 1F).
173	The patient was also positive for IgG4 deposition in the glomeruli. IHC staining of
174	the cutaneous nodules excisional biopsy tissues showed that the neurofibroma cells
175	were positive for S-100 (labelling index 50%) (Fig. 2A), neurofibromin (labelling
176	index 8%) (Fig. 2B) and THSD7A (labelling index 25%) (Fig. 2C), but negative for
177	PLA ₂ R (Fig. 2D).

178	The patient received treatment with angiotensin-converting enzyme inhibitor
179	(benazepril), oral prednisolone (1 mg/kg/day initially, tapering gradually to 20mg/day
180	after 6 months) and intravenous cyclophosphamide (1.0 g/month). The patient did not
181	respond to the treatment. Laboratory testing after 6 months revealed 24-hour
182	proteinuria at 4.8 g, occult hematuria 2+, serum albumin 22 g/L and Scr 63 µmol/L.
183	3.2 Mutation analysis
184	Sanger sequencing in the patient revealed a previously reported heterozygous
185	frameshift mutation c.1541_1542delAG resulting in p. Gln514fs in the NF1 gene (Fig.
186	3) (Maruoka et al., 2014; Ponti et al., 2014). None of the first-degree relatives of the
187	patient were available for sequencing.
188	
189	4. Discussion
190	A literature search of the PubMed identified a total of 3 NF1 cases associated with
191	membranous nephropathy, but with no molecular analysis (Tab 1). Gene sequencing

in the patient in this report revealed a heterozygous frameshift mutation

193 (c.1541_1542delAG, p.Gln514fs) in the *NF1* gene. To our knowledge, this represents

the most credible case of NF1 in association with THSD7A-associated MN.

195 THSD7A was initially characterized as an endothelial protein that is expressed in the

- 196 placental vasculature (Wang et al., 2010). In 2014, THSD7A was identified as an
- 197 autoantigen in adult idiopathic MN (Tomas et al., 2014) and the prevalence of

198	THSD7A-associated MN is about 2% to 9% (Tomas et al., 2014; Iwakura et al., 2015;
199	Wang et al., 2017). Subsequent studies suggested higher rate of cancer comorbidity
200	(approximately 20%) in patients with THSD7A-associated MN (Hoxha et al., 2017).
201	Stahl et al. documented positive THSD7A in a variety of cancers including renal cell
202	carcinoma, colorectal cancer, prostate cancer and breast cancer. Notably, in patients
203	with prostate cancer, THSD7A overexpression was associated with unfavorable
204	tumor phenotype and prostate-specific antigen recurrence (Stahl et al., 2017).
205	In our NF1 patient with THSD7A-associated MN, strong positive staining of
206	THSD7A in both skin and renal biopsy samples, together with the temporal
207	association between nephrotic syndrome and skin lesions and lack of treatment
208	response, suggested the possibility that MN could be the result of immune response to
208 209	response, suggested the possibility that MN could be the result of immune response to THSD7A in NF1. Such a notion is consistent with 2 published cases of
209	THSD7A in NF1. Such a notion is consistent with 2 published cases of
209 210	THSD7A in NF1. Such a notion is consistent with 2 published cases of THSD7A-associated MN and malignancy, in which THSD7A was aberrantly
209 210 211	THSD7A in NF1. Such a notion is consistent with 2 published cases of THSD7A-associated MN and malignancy, in which THSD7A was aberrantly expressed in the primary gallbladder and endometrial cancer tissues and lymph-node
209210211212	THSD7A in NF1. Such a notion is consistent with 2 published cases of THSD7A-associated MN and malignancy, in which THSD7A was aberrantly expressed in the primary gallbladder and endometrial cancer tissues and lymph-node metastases (Hoxha et al., 2016; Hoxha et al., 2017). Interestingly, in the patient with
 209 210 211 212 213 	THSD7A in NF1. Such a notion is consistent with 2 published cases of THSD7A-associated MN and malignancy, in which THSD7A was aberrantly expressed in the primary gallbladder and endometrial cancer tissues and lymph-node metastases (Hoxha et al., 2016; Hoxha et al., 2017). Interestingly, in the patient with THSD7A-associated MN and gallbladder cancer, treatment of the primary cancer
 209 210 211 212 213 214 	THSD7A in NF1. Such a notion is consistent with 2 published cases of THSD7A-associated MN and malignancy, in which THSD7A was aberrantly expressed in the primary gallbladder and endometrial cancer tissues and lymph-node metastases (Hoxha et al., 2016; Hoxha et al., 2017). Interestingly, in the patient with THSD7A-associated MN and gallbladder cancer, treatment of the primary cancer resulted in THSD7A antibody seroreversion and proteinuria remission (Hoxha et al.,

218	nerufibroma cells; the resulting THSD7A antibodies then recognize THSD7A on
219	podocytes to initiate MN. However, serum THSD7A antibody, as detected by ELISA,
220	was within the normal range in our patient, as is the case for PLA ₂ R, which was
221	positive along the glomerular capillary wall but not detected in the serum in this
222	patient. It is plausible that alternative mechanisms (for example, the presence of
223	antibodies not recognized by the assay kits) could exist. Other possibilities might
224	include that the circulating THSD7A and PLA ₂ R antibodies has not yet reached a
225	level high enough or may have disappeared from the circulation, or the antibody
226	could all be bound to the antigen in the glomeruli. In the Chinese cohort of 578 MN
227	patients (Wang et al., 2017), circulating anti-THSD7A was detected in only 6 out of
228	12 (50%) patients with enhanced glomerular expression of THSD7A, whereas 120
229	out of 514 (21%) patients negative for anti-PLA ₂ R antibodies showed enhanced
230	expression of PLA ₂ R in glomeruli.
231	It is noteworthy to point out the p. Gln514fs mutation of the NF1 gene does not
232	necessarily lead to MN; neither proteinuria nor renal dysfunction was noted in 2
233	previous reports of NF1 patients (Maruoka et al., 2014; Ponti et al., 2014). Also, the
234	patient in the current case had NF1 for over 30 years before nephrotic syndrome.
235	Spontaneous remission occurs in about 30% of idiopathic MN patients with nephrotic
236	syndrome (Polanco et al., 2010). In a previous case report of comorbid NF1 and MN
237	(antigen not determined), spontaneous remission of proteinuria was noted (Table 1;

238	Kokubo et al., 1993). In our case, proteinuria did not remit after 6-month therapy of
239	oral prednisolone and intravenous cyclophosphamide. As a result, we believe that
240	MN could either be coincident or mechanistically related depending on differing
241	disease antigens.
242	In conclusion, the current case suggested the possibility that MN could be the result
243	of immune response to THSD7A in NF1. Supporting evidence included positive
244	THSD7A in both skin and renal biopsy samples, the temporal association between
245	nephrotic syndrome and skin lesions, and lack of treatment response to
246	glucocorticoids and cyclophosphamide. This report may improve understanding of
247	the mechanistic link between MN and cancer.
248	
249	
250	
251	
252	
253	
254	
255	
256	
257	

258	Conflict of interest
259	All authors declare no conflict of interest.
260	
261	Acknowledgements
262	This work was partially supported by the National Natural Science Foundation of
263	China (grant No.81500507) and the Young Investigator Scholarship of Xin Hua
264	Hospital (grant No.2015001).
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	

278 **References**

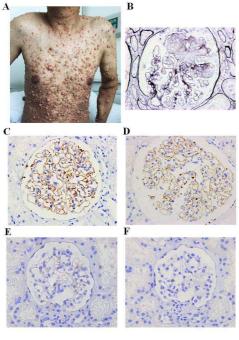
- 279 Beck, L.H. Jr., et al. 2009. M-type phospholipase A2 receptor as target antigen in
- 280 idiopathic membranous nephropathy. N. Eng. J. Med. 361, 11-21.
- 281 Boyd, K.P., et al. 2009. Neurofibromatosis type 1. J. Am. Acad. Dermatol. 61, 1-14.
- 282 Cattran, D.C., Brenchley, P.E., 2017. Membranous nephropathy: integrating basic
- science into improved clinical management. Kidney. Int. 91, 566-574.
- 284 Dombi, E., et al., 2016. Activity of Selumentinib in Neurofibromatosis Type
- 285 1-Related Plexiform neurofibromas. N. Eng. J. Med. 375, 2550-2560.
- Hoxha, E., et al., 2016. A mechanism for cancer-associated membranous nephropathy.
- 287 N. Eng. J. Med. 374, 1995-1996.
- Hoxha, E., et al. 2012. Enhanced expression of the M-type phospholipase A2 receptor
- 289 in glomeruli correlates with serum receptor antibodies in primary membranous
- 290 nephropathy. Kidney. Int. 82, 797-804.
- 291 Hoxha, E., et al., 2107. An indirect immunofluorescence method facilitates detection
- 292 of Thrombospondin type 1 domain-containing 7A-speicific antibodies in
- 293 membranous nepohropathy. J. Am. Soc. Nephrol. 28, 520-531.
- 294 Iwakura, T., et al. 2015. Prevalence of enhuanced granular expression of
- thrombopondin type-1 domain-containing 7A in the glomeruli of Japanese patients
- with idiopathic membranous nephropathy. PLoS. One. 10, e0138841.

- 297 Jhaveri, K.D., et al. 2013. Glomerular diseases seen with caner and chemotherapy: a
- 298 narrative review. Kidney. Int. 84, 34-44.
- 299 Kokubo, T., et al. 2014. Recklinghausen's neurofibromatosis associated with
- 300 membranous nephropathy. Nephron. 65, 486.
- 301 Lin, A.L., Gutman, D.H., 2013. Advances in the treatment of
- 302 neurofibromatosis-associated tumors. Nat. Rev. Clin. Oncol. 10, 616–624.
- 303 Maruoka, R., et al., 2014. The use of next-generation sequencing in molecular
- 304 diagnosis of neurofibromatosis type 1: a validation study. Genet. Test. Mol.
- 305 Biomarkers. 18, 722-735.
- 306 Polanco, N., et al. 2010. Advances in the treatment of neurofibromatosis-associated
- 307 tumors. J. Am. Soc. Nephrol. 21, 697-704.
- 308 Ponti, G., et al., 2014. NF1 truncating mutations associated with aggressive clinical
- 309 phenotype with elephantiasis neuromatosa and solid malignancies. Anticancer. Res.
- 310 34, 3021-3030.
- 311 Stahl, P.R., et al. 2017. THSD7A expression in human cancer. Genes. Chromosomes.
- 312 Cancer. 56, 314-327.
- 313 Tomas, N.M., et al., 2014. Thrombospondin type 1 domain-containing 7A in
- 314 idiopathic membranous nephropathy. N. Eng. J. Med. 371, 2277-2287.
- 315 Tóth, T., et al. 1996. A case of membranous nephropathy associated with von
- 316 Recklinghausen's neurofibromatosis. Clin. Nephrol. 45, 271-272.

- 317 Van-Gils, J., et al. 2014. Atypical hematologic and renal manifestations in
- 318 neurofibromatosis type I: coincidence or pathophysiological link? Eur. J. Med. Genet.
- 319 57, 639-642.
- 320 Wang, C.H., et al., 2010. Thrombospondin type 1 domain-containing 7A (THSD7A)
- 321 mediates endothelial cell migration and tube formation. J. Cell. Physiol. 222,
- 685-694.
- 323 Wang, J., et al., 2017. Circulating Antibodies against Thrombospondin Type-I
- 324 Domain-Containing 7A in Chinese Patients with Idiopathic Membranous
- 325 Nephropathy. Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.01460217. [Epub ahead
- 326 of print]
- 327 Wani, M.M., et al. 2006. von Recklinghausen's neurofibromatosis associated with
- 328 membranous glomerulonephritis. Saudi. Med. J. 27, 534-535.
- 329
- 330
- 331
- 001
- 332
- 333
- 334
- 335
- 336

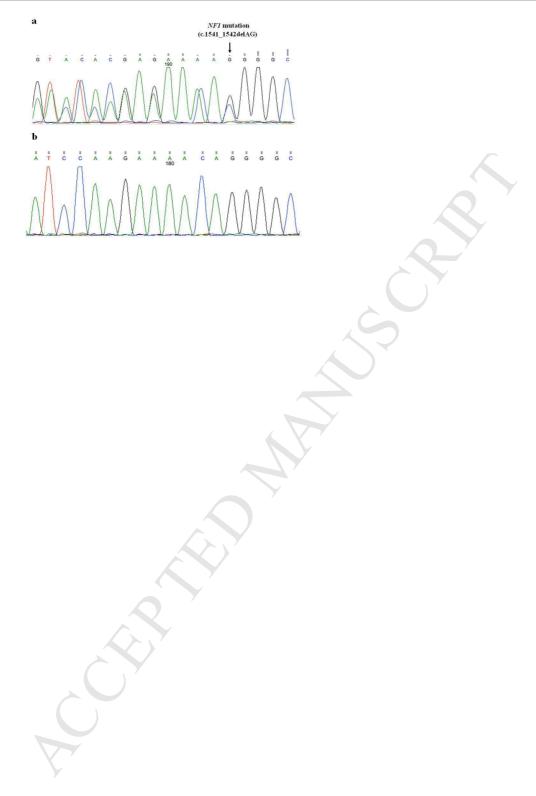
337 Figure legends

- **Figure 1. A.** Clinical features of the NF1 patient: multiple cutaneous neurofibroma of
- 339 different sizes scattered on the neck, trunk and extremities of the patient. Figure 1.
- 340 **B-Figure 1.D.** Renal histological findings of the NF1 patient: (**B**) Light microscopy
- 341 showing membranous nephropathy with segmental endothelial and mesangial cell
- 342 proliferation (silver staining, x40); Immunohistochemistry (IHC, x40) showed strong
- 343 positive staining of THSD7A (C) and $PLA_2R(D)$ along the glomerular basement
- 344 membrane in the NF1 patient. Figure 1. E-Figure 1.F. IHC staining (x40) of
- 345 THSD7A (E) and $PLA_2R1(F)$ in renal biopsy tissue of normal control.
- 346
- 347 **Figure 2.** Microscopic findings of the cutaneous nodule excisional biopsy and the
- 348 results of immunohistochemistry (x40). A. S-100; B. Neurofibromin; C. THSD7A;
- 349 and **D.** PLA₂R1.
- 350


Figure 3. Electropherogram showing the heterozygous frameshift *NF1* mutation

352 (c.1541_1542delAG, p. Gln514fs) in the patient (A) comparing to a non-carrier (B).

Case	Age/Gender	Family history	NF1-related features	NF1 mutation	Renal outcome	Reference
1	62 yr/male	No family history of NF1 or kidney disease	Subcutaneous neurofibromas, no café-au-lait spots	c.1541_1542delAG, p. Gln514Argfs*43	No proteinuria remission after GC and CTX treatment	Current report
2	70 yr/female	No family history of NF1 or kidney disease	Subcutaneous neurofibromas and café-au-lait spots	No molecular analysis	N/A	Wani <i>et al.</i> , 2006
3	49 yr/male	No family history of NF1 or kidney disease	Subcutaneous neurofibromas and café-au-lait spots	No molecular analysis	N/A	Toth et al., 1996
4	68 yr /male	No family history of NF1 or kidney disease	Subcutaneous neurofibromas, café-au-lait spots and axillary freckling	No molecular analysis	Spontaneous proteinuria remission	Kokubo <i>et al.</i> , 1993


CTX: cyclophosphamide; GC: glucocorticosteroid; N/A: not available; NF1: Neurofibromatosis type 1

-. not availabi

A MARINE SCORES

